Metamath Proof Explorer


Theorem sselda

Description: Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014)

Ref Expression
Hypothesis sseld.1 ( 𝜑𝐴𝐵 )
Assertion sselda ( ( 𝜑𝐶𝐴 ) → 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 sseld.1 ( 𝜑𝐴𝐵 )
2 1 sseld ( 𝜑 → ( 𝐶𝐴𝐶𝐵 ) )
3 2 imp ( ( 𝜑𝐶𝐴 ) → 𝐶𝐵 )