Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sseld.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
Assertion | sseld | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
2 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |