Description: Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sseld.1 | |- ( ph -> A C_ B ) |
|
Assertion | sselda | |- ( ( ph /\ C e. A ) -> C e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | |- ( ph -> A C_ B ) |
|
2 | 1 | sseld | |- ( ph -> ( C e. A -> C e. B ) ) |
3 | 2 | imp | |- ( ( ph /\ C e. A ) -> C e. B ) |