Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseld.1 | |- ( ph -> A C_ B ) |
|
sseldd.2 | |- ( ph -> C e. A ) |
||
Assertion | sseldd | |- ( ph -> C e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | |- ( ph -> A C_ B ) |
|
2 | sseldd.2 | |- ( ph -> C e. A ) |
|
3 | 1 | sseld | |- ( ph -> ( C e. A -> C e. B ) ) |
4 | 2 3 | mpd | |- ( ph -> C e. B ) |