Metamath Proof Explorer


Theorem sseldd

Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses sseld.1 φ A B
sseldd.2 φ C A
Assertion sseldd φ C B

Proof

Step Hyp Ref Expression
1 sseld.1 φ A B
2 sseldd.2 φ C A
3 1 sseld φ C A C B
4 2 3 mpd φ C B