Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sseldd
Next ⟩
ssneld
Metamath Proof Explorer
Ascii
Unicode
Theorem
sseldd
Description:
Membership inference from subclass relationship.
(Contributed by
NM
, 14-Dec-2004)
Ref
Expression
Hypotheses
sseld.1
⊢
φ
→
A
⊆
B
sseldd.2
⊢
φ
→
C
∈
A
Assertion
sseldd
⊢
φ
→
C
∈
B
Proof
Step
Hyp
Ref
Expression
1
sseld.1
⊢
φ
→
A
⊆
B
2
sseldd.2
⊢
φ
→
C
∈
A
3
1
sseld
⊢
φ
→
C
∈
A
→
C
∈
B
4
2
3
mpd
⊢
φ
→
C
∈
B