Metamath Proof Explorer


Theorem sseldd

Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004)

Ref Expression
Hypotheses sseld.1 ( 𝜑𝐴𝐵 )
sseldd.2 ( 𝜑𝐶𝐴 )
Assertion sseldd ( 𝜑𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 sseld.1 ( 𝜑𝐴𝐵 )
2 sseldd.2 ( 𝜑𝐶𝐴 )
3 1 sseld ( 𝜑 → ( 𝐶𝐴𝐶𝐵 ) )
4 2 3 mpd ( 𝜑𝐶𝐵 )