Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseld.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
sseldd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
Assertion | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
2 | sseldd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
3 | 1 | sseld | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
4 | 2 3 | mpd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |