Step |
Hyp |
Ref |
Expression |
1 |
|
caovassg.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) ) |
2 |
1
|
ralrimivvva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) ) |
3 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ) = ( 𝐴 𝐹 𝑦 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( ( 𝐴 𝐹 𝑦 ) 𝐹 𝑧 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) = ( 𝐴 𝐹 ( 𝑦 𝐹 𝑧 ) ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) ↔ ( ( 𝐴 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝐴 𝐹 ( 𝑦 𝐹 𝑧 ) ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 𝑦 ) = ( 𝐴 𝐹 𝐵 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐹 𝑦 ) 𝐹 𝑧 ) = ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝑧 ) ) |
9 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝐹 𝑧 ) = ( 𝐵 𝐹 𝑧 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐹 ( 𝑦 𝐹 𝑧 ) ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝑧 ) ) ) |
11 |
8 10
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝐴 𝐹 ( 𝑦 𝐹 𝑧 ) ) ↔ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝑧 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝑧 ) ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝑧 ) = ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 𝐹 𝑧 ) = ( 𝐵 𝐹 𝐶 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 𝐹 ( 𝐵 𝐹 𝑧 ) ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝑧 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝑧 ) ) ↔ ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) ) |
16 |
6 11 15
|
rspc3v |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 ) = ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) ) |
17 |
2 16
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐹 𝐶 ) = ( 𝐴 𝐹 ( 𝐵 𝐹 𝐶 ) ) ) |