Metamath Proof Explorer


Theorem mpan9

Description: Modus ponens conjoining dissimilar antecedents. (Contributed by NM, 1-Feb-2008) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses mpan9.1 ( 𝜑𝜓 )
mpan9.2 ( 𝜒 → ( 𝜓𝜃 ) )
Assertion mpan9 ( ( 𝜑𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 mpan9.1 ( 𝜑𝜓 )
2 mpan9.2 ( 𝜒 → ( 𝜓𝜃 ) )
3 1 2 syl5 ( 𝜒 → ( 𝜑𝜃 ) )
4 3 impcom ( ( 𝜑𝜒 ) → 𝜃 )