Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralrimivvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) → 𝜓 ) | |
Assertion | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivvva.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) → 𝜓 ) | |
2 | 1 | 3anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐶 ) → 𝜓 ) |
3 | 2 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ∀ 𝑧 ∈ 𝐶 𝜓 ) |
4 | 3 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |
5 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜓 ) |