Metamath Proof Explorer


Theorem ralrimivvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis ralrimivvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) ) → 𝜓 )
Assertion ralrimivvva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimivvva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵𝑧𝐶 ) ) → 𝜓 )
2 1 3anassrs ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝑧𝐶 ) → 𝜓 )
3 2 ralrimiva ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → ∀ 𝑧𝐶 𝜓 )
4 3 ralrimiva ( ( 𝜑𝑥𝐴 ) → ∀ 𝑦𝐵𝑧𝐶 𝜓 )
5 4 ralrimiva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )