Metamath Proof Explorer


Theorem ralrimivvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis ralrimivvva.1 φxAyBzCψ
Assertion ralrimivvva φxAyBzCψ

Proof

Step Hyp Ref Expression
1 ralrimivvva.1 φxAyBzCψ
2 1 3anassrs φxAyBzCψ
3 2 ralrimiva φxAyBzCψ
4 3 ralrimiva φxAyBzCψ
5 4 ralrimiva φxAyBzCψ