Metamath Proof Explorer


Theorem ralrimivvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis ralrimivvva.1
|- ( ( ph /\ ( x e. A /\ y e. B /\ z e. C ) ) -> ps )
Assertion ralrimivvva
|- ( ph -> A. x e. A A. y e. B A. z e. C ps )

Proof

Step Hyp Ref Expression
1 ralrimivvva.1
 |-  ( ( ph /\ ( x e. A /\ y e. B /\ z e. C ) ) -> ps )
2 1 3anassrs
 |-  ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ z e. C ) -> ps )
3 2 ralrimiva
 |-  ( ( ( ph /\ x e. A ) /\ y e. B ) -> A. z e. C ps )
4 3 ralrimiva
 |-  ( ( ph /\ x e. A ) -> A. y e. B A. z e. C ps )
5 4 ralrimiva
 |-  ( ph -> A. x e. A A. y e. B A. z e. C ps )