Step |
Hyp |
Ref |
Expression |
1 |
|
seqsplit.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
seqsplit.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
3 |
|
seqsplit.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
4 |
|
seq1p.4 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
seq1p.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
6 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
1 2 3 7 5
|
seqsplit |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
9 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) = ( ( 𝐹 ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |
12 |
8 11
|
eqtrd |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( ( 𝐹 ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , 𝐹 ) ‘ 𝑁 ) ) ) |