Metamath Proof Explorer


Theorem ssel2

Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004)

Ref Expression
Assertion ssel2 ( ( 𝐴𝐵𝐶𝐴 ) → 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝐶𝐴𝐶𝐵 ) )
2 1 imp ( ( 𝐴𝐵𝐶𝐴 ) → 𝐶𝐵 )