| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝐾  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝐾  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							elfzuz3 | 
							⊢ ( ( 𝐾  +  1 )  ∈  ( 𝑀 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							peano2uzr | 
							⊢ ( ( 𝐾  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝐾  +  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							syl2an | 
							⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝐾  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elfzuzb | 
							⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) ) )  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							sylanbrc | 
							⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( 𝐾  +  1 )  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐾  ∈  ( 𝑀 ... 𝑁 ) )  |