| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl | 
							 |-  ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ... N ) ) -> K e. ( ZZ>= ` M ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eluzelz | 
							 |-  ( K e. ( ZZ>= ` M ) -> K e. ZZ )  | 
						
						
							| 3 | 
							
								
							 | 
							elfzuz3 | 
							 |-  ( ( K + 1 ) e. ( M ... N ) -> N e. ( ZZ>= ` ( K + 1 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							peano2uzr | 
							 |-  ( ( K e. ZZ /\ N e. ( ZZ>= ` ( K + 1 ) ) ) -> N e. ( ZZ>= ` K ) )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							syl2an | 
							 |-  ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ... N ) ) -> N e. ( ZZ>= ` K ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elfzuzb | 
							 |-  ( K e. ( M ... N ) <-> ( K e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) )  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							sylanbrc | 
							 |-  ( ( K e. ( ZZ>= ` M ) /\ ( K + 1 ) e. ( M ... N ) ) -> K e. ( M ... N ) )  |