Metamath Proof Explorer


Theorem sstrd

Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004)

Ref Expression
Hypotheses sstrd.1 ( 𝜑𝐴𝐵 )
sstrd.2 ( 𝜑𝐵𝐶 )
Assertion sstrd ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sstrd.1 ( 𝜑𝐴𝐵 )
2 sstrd.2 ( 𝜑𝐵𝐶 )
3 sstr ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 )
4 1 2 3 syl2anc ( 𝜑𝐴𝐶 )