Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sstrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
sstrd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | ||
Assertion | sstrd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
2 | sstrd.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) | |
3 | sstr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶 ) → 𝐴 ⊆ 𝐶 ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |