Metamath Proof Explorer


Theorem sstrd

Description: Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004)

Ref Expression
Hypotheses sstrd.1 φ A B
sstrd.2 φ B C
Assertion sstrd φ A C

Proof

Step Hyp Ref Expression
1 sstrd.1 φ A B
2 sstrd.2 φ B C
3 sstr A B B C A C
4 1 2 3 syl2anc φ A C