Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
sstrd
Next ⟩
sstrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
sstrd
Description:
Subclass transitivity deduction.
(Contributed by
NM
, 2-Jun-2004)
Ref
Expression
Hypotheses
sstrd.1
⊢
φ
→
A
⊆
B
sstrd.2
⊢
φ
→
B
⊆
C
Assertion
sstrd
⊢
φ
→
A
⊆
C
Proof
Step
Hyp
Ref
Expression
1
sstrd.1
⊢
φ
→
A
⊆
B
2
sstrd.2
⊢
φ
→
B
⊆
C
3
sstr
⊢
A
⊆
B
∧
B
⊆
C
→
A
⊆
C
4
1
2
3
syl2anc
⊢
φ
→
A
⊆
C