Metamath Proof Explorer


Theorem peano2uz

Description: Second Peano postulate for an upper set of integers. (Contributed by NM, 7-Sep-2005)

Ref Expression
Assertion peano2uz N M N + 1 M

Proof

Step Hyp Ref Expression
1 simp1 M N M N M
2 peano2z N N + 1
3 2 3ad2ant2 M N M N N + 1
4 zre M M
5 zre N N
6 letrp1 M N M N M N + 1
7 5 6 syl3an2 M N M N M N + 1
8 4 7 syl3an1 M N M N M N + 1
9 1 3 8 3jca M N M N M N + 1 M N + 1
10 eluz2 N M M N M N
11 eluz2 N + 1 M M N + 1 M N + 1
12 9 10 11 3imtr4i N M N + 1 M