Metamath Proof Explorer


Theorem uzind4

Description: Induction on the upper set of integers that starts at an integer M . The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005)

Ref Expression
Hypotheses uzind4.1 j=Mφψ
uzind4.2 j=kφχ
uzind4.3 j=k+1φθ
uzind4.4 j=Nφτ
uzind4.5 Mψ
uzind4.6 kMχθ
Assertion uzind4 NMτ

Proof

Step Hyp Ref Expression
1 uzind4.1 j=Mφψ
2 uzind4.2 j=kφχ
3 uzind4.3 j=k+1φθ
4 uzind4.4 j=Nφτ
5 uzind4.5 Mψ
6 uzind4.6 kMχθ
7 eluzel2 NMM
8 breq2 m=NMmMN
9 eluzelz NMN
10 eluzle NMMN
11 8 9 10 elrabd NMNm|Mm
12 breq2 m=kMmMk
13 12 elrab km|MmkMk
14 eluz2 kMMkMk
15 14 biimpri MkMkkM
16 15 3expb MkMkkM
17 13 16 sylan2b Mkm|MmkM
18 17 6 syl Mkm|Mmχθ
19 1 2 3 4 5 18 uzind3 MNm|Mmτ
20 7 11 19 syl2anc NMτ