Metamath Proof Explorer


Theorem elrab

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999) Remove dependency on ax-13 . (Revised by Steven Nguyen, 23-Nov-2022)

Ref Expression
Hypothesis elrab.1 x=Aφψ
Assertion elrab AxB|φABψ

Proof

Step Hyp Ref Expression
1 elrab.1 x=Aφψ
2 elex AxB|φAV
3 elex ABAV
4 3 adantr ABψAV
5 eleq1 x=AxBAB
6 5 1 anbi12d x=AxBφABψ
7 df-rab xB|φ=x|xBφ
8 6 7 elab2g AVAxB|φABψ
9 2 4 8 pm5.21nii AxB|φABψ