Metamath Proof Explorer


Theorem elrab

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999) Remove dependency on ax-13 . (Revised by Steven Nguyen, 23-Nov-2022)

Ref Expression
Hypothesis elrab.1 x = A φ ψ
Assertion elrab A x B | φ A B ψ

Proof

Step Hyp Ref Expression
1 elrab.1 x = A φ ψ
2 elex A x B | φ A V
3 elex A B A V
4 3 adantr A B ψ A V
5 eleq1 x = A x B A B
6 5 1 anbi12d x = A x B φ A B ψ
7 df-rab x B | φ = x | x B φ
8 6 7 elab2g A V A x B | φ A B ψ
9 2 4 8 pm5.21nii A x B | φ A B ψ