Metamath Proof Explorer


Theorem elrab

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999) Remove dependency on ax-13 . (Revised by Steven Nguyen, 23-Nov-2022)

Ref Expression
Hypothesis elrab.1
|- ( x = A -> ( ph <-> ps ) )
Assertion elrab
|- ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) )

Proof

Step Hyp Ref Expression
1 elrab.1
 |-  ( x = A -> ( ph <-> ps ) )
2 elex
 |-  ( A e. { x e. B | ph } -> A e. _V )
3 elex
 |-  ( A e. B -> A e. _V )
4 3 adantr
 |-  ( ( A e. B /\ ps ) -> A e. _V )
5 eleq1
 |-  ( x = A -> ( x e. B <-> A e. B ) )
6 5 1 anbi12d
 |-  ( x = A -> ( ( x e. B /\ ph ) <-> ( A e. B /\ ps ) ) )
7 df-rab
 |-  { x e. B | ph } = { x | ( x e. B /\ ph ) }
8 6 7 elab2g
 |-  ( A e. _V -> ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) ) )
9 2 4 8 pm5.21nii
 |-  ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) )