Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | elrab.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
Assertion | elrab3 | |- ( A e. B -> ( A e. { x e. B | ph } <-> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | 1 | elrab | |- ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) ) |
3 | 2 | baib | |- ( A e. B -> ( A e. { x e. B | ph } <-> ps ) ) |