Metamath Proof Explorer


Theorem elrab3

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006)

Ref Expression
Hypothesis elrab.1
|- ( x = A -> ( ph <-> ps ) )
Assertion elrab3
|- ( A e. B -> ( A e. { x e. B | ph } <-> ps ) )

Proof

Step Hyp Ref Expression
1 elrab.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 elrab
 |-  ( A e. { x e. B | ph } <-> ( A e. B /\ ps ) )
3 2 baib
 |-  ( A e. B -> ( A e. { x e. B | ph } <-> ps ) )