Metamath Proof Explorer


Theorem elrab3

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006)

Ref Expression
Hypothesis elrab.1 x=Aφψ
Assertion elrab3 ABAxB|φψ

Proof

Step Hyp Ref Expression
1 elrab.1 x=Aφψ
2 1 elrab AxB|φABψ
3 2 baib ABAxB|φψ