Metamath Proof Explorer


Theorem elrabd

Description: Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elrabd.1 x=Aψχ
elrabd.2 φAB
elrabd.3 φχ
Assertion elrabd φAxB|ψ

Proof

Step Hyp Ref Expression
1 elrabd.1 x=Aψχ
2 elrabd.2 φAB
3 elrabd.3 φχ
4 1 elrab AxB|ψABχ
5 2 3 4 sylanbrc φAxB|ψ