Metamath Proof Explorer


Theorem 3eqtrd

Description: A deduction from three chained equalities. (Contributed by NM, 29-Oct-1995)

Ref Expression
Hypotheses 3eqtrd.1 φ A = B
3eqtrd.2 φ B = C
3eqtrd.3 φ C = D
Assertion 3eqtrd φ A = D

Proof

Step Hyp Ref Expression
1 3eqtrd.1 φ A = B
2 3eqtrd.2 φ B = C
3 3eqtrd.3 φ C = D
4 2 3 eqtrd φ B = D
5 1 4 eqtrd φ A = D