Metamath Proof Explorer


Theorem spc2gv

Description: Specialization with two quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004)

Ref Expression
Hypothesis spc2egv.1 x=Ay=Bφψ
Assertion spc2gv AVBWxyφψ

Proof

Step Hyp Ref Expression
1 spc2egv.1 x=Ay=Bφψ
2 1 notbid x=Ay=B¬φ¬ψ
3 2 spc2egv AVBW¬ψxy¬φ
4 2nalexn ¬xyφxy¬φ
5 3 4 imbitrrdi AVBW¬ψ¬xyφ
6 5 con4d AVBWxyφψ