Metamath Proof Explorer


Theorem 2nalexn

Description: Part of theorem *11.5 in WhiteheadRussell p. 164. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2nalexn ¬xyφxy¬φ

Proof

Step Hyp Ref Expression
1 df-ex xy¬φ¬x¬y¬φ
2 alex yφ¬y¬φ
3 2 albii xyφx¬y¬φ
4 1 3 xchbinxr xy¬φ¬xyφ
5 4 bicomi ¬xyφxy¬φ