Metamath Proof Explorer


Theorem 2exnaln

Description: Theorem *11.22 in WhiteheadRussell p. 160. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion 2exnaln xyφ¬xy¬φ

Proof

Step Hyp Ref Expression
1 df-ex xyφ¬x¬yφ
2 alnex y¬φ¬yφ
3 2 albii xy¬φx¬yφ
4 1 3 xchbinxr xyφ¬xy¬φ