Metamath Proof Explorer


Theorem lensymd

Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
lensymd.3 φAB
Assertion lensymd φ¬B<A

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 lensymd.3 φAB
4 1 2 lenltd φAB¬B<A
5 3 4 mpbid φ¬B<A