Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to' implies 'not less than'.  (Contributed by Glauco Siliprandi, 11-Dec-2019)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ltd.1 | 
						⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
					
					
						 | 
						 | 
						ltd.2 | 
						⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
					
					
						 | 
						 | 
						lensymd.3 | 
						⊢ ( 𝜑  →  𝐴  ≤  𝐵 )  | 
					
				
					 | 
					Assertion | 
					lensymd | 
					⊢  ( 𝜑  →  ¬  𝐵  <  𝐴 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltd.1 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							ltd.2 | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							lensymd.3 | 
							⊢ ( 𝜑  →  𝐴  ≤  𝐵 )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							lenltd | 
							⊢ ( 𝜑  →  ( 𝐴  ≤  𝐵  ↔  ¬  𝐵  <  𝐴 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ¬  𝐵  <  𝐴 )  |