Metamath Proof Explorer


Theorem lenltd

Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
Assertion lenltd φ A B ¬ B < A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 lenlt A B A B ¬ B < A
4 1 2 3 syl2anc φ A B ¬ B < A