Metamath Proof Explorer
		
		
		
		Description:  'Less than or equal to' in terms of 'less than'.  (Contributed by Mario
       Carneiro, 27-May-2016)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						ltd.1 | 
						   | 
					
					
						 | 
						 | 
						ltd.2 | 
						   | 
					
				
					 | 
					Assertion | 
					lenltd | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ltd.1 | 
							   | 
						
						
							| 2 | 
							
								
							 | 
							ltd.2 | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							lenlt | 
							   | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							   |