Metamath Proof Explorer


Theorem gtned

Description: 'Less than' implies not equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φA
ltned.2 φA<B
Assertion gtned φBA

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltned.2 φA<B
3 ltne AA<BBA
4 1 2 3 syl2anc φBA