Metamath Proof Explorer


Theorem ltne

Description: 'Less than' implies not equal. (Contributed by NM, 9-Oct-1999) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion ltne A A < B B A

Proof

Step Hyp Ref Expression
1 ltnr A ¬ A < A
2 breq2 B = A A < B A < A
3 2 notbid B = A ¬ A < B ¬ A < A
4 1 3 syl5ibrcom A B = A ¬ A < B
5 4 necon2ad A A < B B A
6 5 imp A A < B B A