Metamath Proof Explorer


Theorem eqtr3d

Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995)

Ref Expression
Hypotheses eqtr3d.1 φA=B
eqtr3d.2 φA=C
Assertion eqtr3d φB=C

Proof

Step Hyp Ref Expression
1 eqtr3d.1 φA=B
2 eqtr3d.2 φA=C
3 1 eqcomd φB=A
4 3 2 eqtrd φB=C