Metamath Proof Explorer


Theorem fnfi

Description: A version of fnex for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion fnfi F Fn A A Fin F Fin

Proof

Step Hyp Ref Expression
1 fnresdm F Fn A F A = F
2 1 adantr F Fn A A Fin F A = F
3 reseq2 x = F x = F
4 3 eleq1d x = F x Fin F Fin
5 4 imbi2d x = F Fn A A Fin F x Fin F Fn A A Fin F Fin
6 reseq2 x = y F x = F y
7 6 eleq1d x = y F x Fin F y Fin
8 7 imbi2d x = y F Fn A A Fin F x Fin F Fn A A Fin F y Fin
9 reseq2 x = y z F x = F y z
10 9 eleq1d x = y z F x Fin F y z Fin
11 10 imbi2d x = y z F Fn A A Fin F x Fin F Fn A A Fin F y z Fin
12 reseq2 x = A F x = F A
13 12 eleq1d x = A F x Fin F A Fin
14 13 imbi2d x = A F Fn A A Fin F x Fin F Fn A A Fin F A Fin
15 res0 F =
16 0fin Fin
17 15 16 eqeltri F Fin
18 17 a1i F Fn A A Fin F Fin
19 resundi F y z = F y F z
20 snfi z F z Fin
21 fnfun F Fn A Fun F
22 funressn Fun F F z z F z
23 21 22 syl F Fn A F z z F z
24 23 adantr F Fn A A Fin F z z F z
25 ssfi z F z Fin F z z F z F z Fin
26 20 24 25 sylancr F Fn A A Fin F z Fin
27 unfi F y Fin F z Fin F y F z Fin
28 26 27 sylan2 F y Fin F Fn A A Fin F y F z Fin
29 19 28 eqeltrid F y Fin F Fn A A Fin F y z Fin
30 29 expcom F Fn A A Fin F y Fin F y z Fin
31 30 a2i F Fn A A Fin F y Fin F Fn A A Fin F y z Fin
32 31 a1i y Fin F Fn A A Fin F y Fin F Fn A A Fin F y z Fin
33 5 8 11 14 18 32 findcard2 A Fin F Fn A A Fin F A Fin
34 33 anabsi7 F Fn A A Fin F A Fin
35 2 34 eqeltrrd F Fn A A Fin F Fin