Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
|
2 |
1
|
ancoms |
|
3 |
|
sseq1 |
|
4 |
|
eleq1 |
|
5 |
3 4
|
imbi12d |
|
6 |
5
|
imbi2d |
|
7 |
|
sseq2 |
|
8 |
7
|
imbi1d |
|
9 |
8
|
albidv |
|
10 |
|
sseq2 |
|
11 |
10
|
imbi1d |
|
12 |
11
|
albidv |
|
13 |
|
sseq2 |
|
14 |
13
|
imbi1d |
|
15 |
14
|
albidv |
|
16 |
|
sseq2 |
|
17 |
16
|
imbi1d |
|
18 |
17
|
albidv |
|
19 |
|
ss0 |
|
20 |
|
0fin |
|
21 |
19 20
|
eqeltrdi |
|
22 |
21
|
ax-gen |
|
23 |
|
sseq1 |
|
24 |
|
eleq1w |
|
25 |
23 24
|
imbi12d |
|
26 |
25
|
cbvalvw |
|
27 |
|
simp1 |
|
28 |
|
snssi |
|
29 |
|
undif |
|
30 |
28 29
|
sylib |
|
31 |
|
uncom |
|
32 |
30 31
|
eqtr3di |
|
33 |
|
uncom |
|
34 |
33
|
sseq2i |
|
35 |
|
ssundif |
|
36 |
34 35
|
sylbb |
|
37 |
32 36
|
anim12ci |
|
38 |
37
|
3adant1 |
|
39 |
|
3anass |
|
40 |
27 38 39
|
sylanbrc |
|
41 |
|
vex |
|
42 |
41
|
difexi |
|
43 |
|
sseq1 |
|
44 |
|
eleq1 |
|
45 |
43 44
|
imbi12d |
|
46 |
42 45
|
spcv |
|
47 |
46
|
imp |
|
48 |
|
snfi |
|
49 |
|
unfi |
|
50 |
47 48 49
|
sylancl |
|
51 |
|
eleq1 |
|
52 |
51
|
biimparc |
|
53 |
50 52
|
stoic3 |
|
54 |
40 53
|
syl |
|
55 |
54
|
3expib |
|
56 |
55
|
alrimiv |
|
57 |
26 56
|
sylbi |
|
58 |
|
disjsn |
|
59 |
|
disjssun |
|
60 |
58 59
|
sylbir |
|
61 |
60
|
biimpa |
|
62 |
34 61
|
sylan2b |
|
63 |
62
|
imim1i |
|
64 |
63
|
alimi |
|
65 |
|
exmid |
|
66 |
65
|
jctl |
|
67 |
|
andir |
|
68 |
66 67
|
sylib |
|
69 |
|
pm3.44 |
|
70 |
68 69
|
syl5 |
|
71 |
70
|
alanimi |
|
72 |
57 64 71
|
syl2anc |
|
73 |
72
|
a1i |
|
74 |
9 12 15 18 22 73
|
findcard2 |
|
75 |
74
|
19.21bi |
|
76 |
6 75
|
vtoclg |
|
77 |
76
|
impd |
|
78 |
2 77
|
mpcom |
|