Description: A subset of a finite set is finite. Corollary 6G of Enderton p. 138. For a shorter proof using ax-pow , see ssfiALT . (Contributed by NM, 24-Jun-1998) Avoid ax-pow . (Revised by BTernaryTau, 12-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ssfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg | |
|
2 | 1 | ancoms | |
3 | sseq1 | |
|
4 | eleq1 | |
|
5 | 3 4 | imbi12d | |
6 | 5 | imbi2d | |
7 | sseq2 | |
|
8 | 7 | imbi1d | |
9 | 8 | albidv | |
10 | sseq2 | |
|
11 | 10 | imbi1d | |
12 | 11 | albidv | |
13 | sseq2 | |
|
14 | 13 | imbi1d | |
15 | 14 | albidv | |
16 | sseq2 | |
|
17 | 16 | imbi1d | |
18 | 17 | albidv | |
19 | ss0 | |
|
20 | 0fin | |
|
21 | 19 20 | eqeltrdi | |
22 | 21 | ax-gen | |
23 | sseq1 | |
|
24 | eleq1w | |
|
25 | 23 24 | imbi12d | |
26 | 25 | cbvalvw | |
27 | simp1 | |
|
28 | snssi | |
|
29 | undif | |
|
30 | 28 29 | sylib | |
31 | uncom | |
|
32 | 30 31 | eqtr3di | |
33 | uncom | |
|
34 | 33 | sseq2i | |
35 | ssundif | |
|
36 | 34 35 | sylbb | |
37 | 32 36 | anim12ci | |
38 | 37 | 3adant1 | |
39 | 3anass | |
|
40 | 27 38 39 | sylanbrc | |
41 | vex | |
|
42 | 41 | difexi | |
43 | sseq1 | |
|
44 | eleq1 | |
|
45 | 43 44 | imbi12d | |
46 | 42 45 | spcv | |
47 | 46 | imp | |
48 | snfi | |
|
49 | unfi | |
|
50 | 47 48 49 | sylancl | |
51 | eleq1 | |
|
52 | 51 | biimparc | |
53 | 50 52 | stoic3 | |
54 | 40 53 | syl | |
55 | 54 | 3expib | |
56 | 55 | alrimiv | |
57 | 26 56 | sylbi | |
58 | disjsn | |
|
59 | disjssun | |
|
60 | 58 59 | sylbir | |
61 | 60 | biimpa | |
62 | 34 61 | sylan2b | |
63 | 62 | imim1i | |
64 | 63 | alimi | |
65 | exmid | |
|
66 | 65 | jctl | |
67 | andir | |
|
68 | 66 67 | sylib | |
69 | pm3.44 | |
|
70 | 68 69 | syl5 | |
71 | 70 | alanimi | |
72 | 57 64 71 | syl2anc | |
73 | 72 | a1i | |
74 | 9 12 15 18 22 73 | findcard2 | |
75 | 74 | 19.21bi | |
76 | 6 75 | vtoclg | |
77 | 76 | impd | |
78 | 2 77 | mpcom | |