Metamath Proof Explorer


Theorem findcard2

Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010) Avoid ax-pow . (Revised by BTernaryTau, 26-Aug-2024)

Ref Expression
Hypotheses findcard2.1 x=φψ
findcard2.2 x=yφχ
findcard2.3 x=yzφθ
findcard2.4 x=Aφτ
findcard2.5 ψ
findcard2.6 yFinχθ
Assertion findcard2 AFinτ

Proof

Step Hyp Ref Expression
1 findcard2.1 x=φψ
2 findcard2.2 x=yφχ
3 findcard2.3 x=yzφθ
4 findcard2.4 x=Aφτ
5 findcard2.5 ψ
6 findcard2.6 yFinχθ
7 isfi xFinwωxw
8 breq2 w=xwx
9 8 imbi1d w=xwφxφ
10 9 albidv w=xxwφxxφ
11 breq2 w=vxwxv
12 11 imbi1d w=vxwφxvφ
13 12 albidv w=vxxwφxxvφ
14 breq2 w=sucvxwxsucv
15 14 imbi1d w=sucvxwφxsucvφ
16 15 albidv w=sucvxxwφxxsucvφ
17 en0 xx=
18 5 1 mpbiri x=φ
19 17 18 sylbi xφ
20 19 ax-gen xxφ
21 nnon vωvOn
22 rexdif1en vOnwsucvzwwzv
23 21 22 sylan vωwsucvzwwzv
24 snssi zwzw
25 uncom wzz=zwz
26 undif zwzwz=w
27 26 biimpi zwzwz=w
28 25 27 eqtrid zwwzz=w
29 vex wV
30 29 difexi wzV
31 breq1 y=wzyvwzv
32 31 anbi2d y=wzvωyvvωwzv
33 uneq1 y=wzyz=wzz
34 33 sbceq1d y=wz[˙yz/x]˙φ[˙wzz/x]˙φ
35 34 imbi2d y=wzxxvφ[˙yz/x]˙φxxvφ[˙wzz/x]˙φ
36 32 35 imbi12d y=wzvωyvxxvφ[˙yz/x]˙φvωwzvxxvφ[˙wzz/x]˙φ
37 breq1 x=yxvyv
38 37 2 imbi12d x=yxvφyvχ
39 38 spvv xxvφyvχ
40 rspe vωyvvωyv
41 isfi yFinvωyv
42 40 41 sylibr vωyvyFin
43 pm2.27 yvyvχχ
44 43 adantl vωyvyvχχ
45 42 44 6 sylsyld vωyvyvχθ
46 39 45 syl5 vωyvxxvφθ
47 vex yV
48 vsnex zV
49 47 48 unex yzV
50 49 3 sbcie [˙yz/x]˙φθ
51 46 50 imbitrrdi vωyvxxvφ[˙yz/x]˙φ
52 30 36 51 vtocl vωwzvxxvφ[˙wzz/x]˙φ
53 dfsbcq wzz=w[˙wzz/x]˙φ[˙w/x]˙φ
54 53 imbi2d wzz=wxxvφ[˙wzz/x]˙φxxvφ[˙w/x]˙φ
55 52 54 imbitrid wzz=wvωwzvxxvφ[˙w/x]˙φ
56 24 28 55 3syl zwvωwzvxxvφ[˙w/x]˙φ
57 56 expd zwvωwzvxxvφ[˙w/x]˙φ
58 57 com12 vωzwwzvxxvφ[˙w/x]˙φ
59 58 rexlimdv vωzwwzvxxvφ[˙w/x]˙φ
60 59 adantr vωwsucvzwwzvxxvφ[˙w/x]˙φ
61 23 60 mpd vωwsucvxxvφ[˙w/x]˙φ
62 61 ex vωwsucvxxvφ[˙w/x]˙φ
63 62 com23 vωxxvφwsucv[˙w/x]˙φ
64 63 alrimdv vωxxvφwwsucv[˙w/x]˙φ
65 nfv wxsucvφ
66 nfv xwsucv
67 nfsbc1v x[˙w/x]˙φ
68 66 67 nfim xwsucv[˙w/x]˙φ
69 breq1 x=wxsucvwsucv
70 sbceq1a x=wφ[˙w/x]˙φ
71 69 70 imbi12d x=wxsucvφwsucv[˙w/x]˙φ
72 65 68 71 cbvalv1 xxsucvφwwsucv[˙w/x]˙φ
73 64 72 imbitrrdi vωxxvφxxsucvφ
74 10 13 16 20 73 finds1 wωxxwφ
75 74 19.21bi wωxwφ
76 75 rexlimiv wωxwφ
77 7 76 sylbi xFinφ
78 4 77 vtoclga AFinτ