Step |
Hyp |
Ref |
Expression |
1 |
|
findcard2.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
2 |
|
findcard2.2 |
|- ( x = y -> ( ph <-> ch ) ) |
3 |
|
findcard2.3 |
|- ( x = ( y u. { z } ) -> ( ph <-> th ) ) |
4 |
|
findcard2.4 |
|- ( x = A -> ( ph <-> ta ) ) |
5 |
|
findcard2.5 |
|- ps |
6 |
|
findcard2.6 |
|- ( y e. Fin -> ( ch -> th ) ) |
7 |
|
isfi |
|- ( x e. Fin <-> E. w e. _om x ~~ w ) |
8 |
|
breq2 |
|- ( w = (/) -> ( x ~~ w <-> x ~~ (/) ) ) |
9 |
8
|
imbi1d |
|- ( w = (/) -> ( ( x ~~ w -> ph ) <-> ( x ~~ (/) -> ph ) ) ) |
10 |
9
|
albidv |
|- ( w = (/) -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ (/) -> ph ) ) ) |
11 |
|
breq2 |
|- ( w = v -> ( x ~~ w <-> x ~~ v ) ) |
12 |
11
|
imbi1d |
|- ( w = v -> ( ( x ~~ w -> ph ) <-> ( x ~~ v -> ph ) ) ) |
13 |
12
|
albidv |
|- ( w = v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ v -> ph ) ) ) |
14 |
|
breq2 |
|- ( w = suc v -> ( x ~~ w <-> x ~~ suc v ) ) |
15 |
14
|
imbi1d |
|- ( w = suc v -> ( ( x ~~ w -> ph ) <-> ( x ~~ suc v -> ph ) ) ) |
16 |
15
|
albidv |
|- ( w = suc v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ suc v -> ph ) ) ) |
17 |
|
en0 |
|- ( x ~~ (/) <-> x = (/) ) |
18 |
5 1
|
mpbiri |
|- ( x = (/) -> ph ) |
19 |
17 18
|
sylbi |
|- ( x ~~ (/) -> ph ) |
20 |
19
|
ax-gen |
|- A. x ( x ~~ (/) -> ph ) |
21 |
|
rexdif1en |
|- ( ( v e. _om /\ w ~~ suc v ) -> E. z e. w ( w \ { z } ) ~~ v ) |
22 |
|
snssi |
|- ( z e. w -> { z } C_ w ) |
23 |
|
uncom |
|- ( ( w \ { z } ) u. { z } ) = ( { z } u. ( w \ { z } ) ) |
24 |
|
undif |
|- ( { z } C_ w <-> ( { z } u. ( w \ { z } ) ) = w ) |
25 |
24
|
biimpi |
|- ( { z } C_ w -> ( { z } u. ( w \ { z } ) ) = w ) |
26 |
23 25
|
eqtrid |
|- ( { z } C_ w -> ( ( w \ { z } ) u. { z } ) = w ) |
27 |
|
vex |
|- w e. _V |
28 |
27
|
difexi |
|- ( w \ { z } ) e. _V |
29 |
|
breq1 |
|- ( y = ( w \ { z } ) -> ( y ~~ v <-> ( w \ { z } ) ~~ v ) ) |
30 |
29
|
anbi2d |
|- ( y = ( w \ { z } ) -> ( ( v e. _om /\ y ~~ v ) <-> ( v e. _om /\ ( w \ { z } ) ~~ v ) ) ) |
31 |
|
uneq1 |
|- ( y = ( w \ { z } ) -> ( y u. { z } ) = ( ( w \ { z } ) u. { z } ) ) |
32 |
31
|
sbceq1d |
|- ( y = ( w \ { z } ) -> ( [. ( y u. { z } ) / x ]. ph <-> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
33 |
32
|
imbi2d |
|- ( y = ( w \ { z } ) -> ( ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) |
34 |
30 33
|
imbi12d |
|- ( y = ( w \ { z } ) -> ( ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) <-> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) ) |
35 |
|
breq1 |
|- ( x = y -> ( x ~~ v <-> y ~~ v ) ) |
36 |
35 2
|
imbi12d |
|- ( x = y -> ( ( x ~~ v -> ph ) <-> ( y ~~ v -> ch ) ) ) |
37 |
36
|
spvv |
|- ( A. x ( x ~~ v -> ph ) -> ( y ~~ v -> ch ) ) |
38 |
|
rspe |
|- ( ( v e. _om /\ y ~~ v ) -> E. v e. _om y ~~ v ) |
39 |
|
isfi |
|- ( y e. Fin <-> E. v e. _om y ~~ v ) |
40 |
38 39
|
sylibr |
|- ( ( v e. _om /\ y ~~ v ) -> y e. Fin ) |
41 |
|
pm2.27 |
|- ( y ~~ v -> ( ( y ~~ v -> ch ) -> ch ) ) |
42 |
41
|
adantl |
|- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> ch ) ) |
43 |
40 42 6
|
sylsyld |
|- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> th ) ) |
44 |
37 43
|
syl5 |
|- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> th ) ) |
45 |
|
vex |
|- y e. _V |
46 |
|
snex |
|- { z } e. _V |
47 |
45 46
|
unex |
|- ( y u. { z } ) e. _V |
48 |
47 3
|
sbcie |
|- ( [. ( y u. { z } ) / x ]. ph <-> th ) |
49 |
44 48
|
syl6ibr |
|- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) |
50 |
28 34 49
|
vtocl |
|- ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
51 |
|
dfsbcq |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( [. ( ( w \ { z } ) u. { z } ) / x ]. ph <-> [. w / x ]. ph ) ) |
52 |
51
|
imbi2d |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
53 |
50 52
|
syl5ib |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
54 |
22 26 53
|
3syl |
|- ( z e. w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
55 |
54
|
expd |
|- ( z e. w -> ( v e. _om -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
56 |
55
|
com12 |
|- ( v e. _om -> ( z e. w -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
57 |
56
|
rexlimdv |
|- ( v e. _om -> ( E. z e. w ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
58 |
57
|
adantr |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( E. z e. w ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
59 |
21 58
|
mpd |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) |
60 |
59
|
ex |
|- ( v e. _om -> ( w ~~ suc v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
61 |
60
|
com23 |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
62 |
61
|
alrimdv |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
63 |
|
nfv |
|- F/ w ( x ~~ suc v -> ph ) |
64 |
|
nfv |
|- F/ x w ~~ suc v |
65 |
|
nfsbc1v |
|- F/ x [. w / x ]. ph |
66 |
64 65
|
nfim |
|- F/ x ( w ~~ suc v -> [. w / x ]. ph ) |
67 |
|
breq1 |
|- ( x = w -> ( x ~~ suc v <-> w ~~ suc v ) ) |
68 |
|
sbceq1a |
|- ( x = w -> ( ph <-> [. w / x ]. ph ) ) |
69 |
67 68
|
imbi12d |
|- ( x = w -> ( ( x ~~ suc v -> ph ) <-> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
70 |
63 66 69
|
cbvalv1 |
|- ( A. x ( x ~~ suc v -> ph ) <-> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) |
71 |
62 70
|
syl6ibr |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. x ( x ~~ suc v -> ph ) ) ) |
72 |
10 13 16 20 71
|
finds1 |
|- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
73 |
72
|
19.21bi |
|- ( w e. _om -> ( x ~~ w -> ph ) ) |
74 |
73
|
rexlimiv |
|- ( E. w e. _om x ~~ w -> ph ) |
75 |
7 74
|
sylbi |
|- ( x e. Fin -> ph ) |
76 |
4 75
|
vtoclga |
|- ( A e. Fin -> ta ) |