| Step |
Hyp |
Ref |
Expression |
| 1 |
|
findcard2.1 |
|- ( x = (/) -> ( ph <-> ps ) ) |
| 2 |
|
findcard2.2 |
|- ( x = y -> ( ph <-> ch ) ) |
| 3 |
|
findcard2.3 |
|- ( x = ( y u. { z } ) -> ( ph <-> th ) ) |
| 4 |
|
findcard2.4 |
|- ( x = A -> ( ph <-> ta ) ) |
| 5 |
|
findcard2.5 |
|- ps |
| 6 |
|
findcard2.6 |
|- ( y e. Fin -> ( ch -> th ) ) |
| 7 |
|
isfi |
|- ( x e. Fin <-> E. w e. _om x ~~ w ) |
| 8 |
|
breq2 |
|- ( w = (/) -> ( x ~~ w <-> x ~~ (/) ) ) |
| 9 |
8
|
imbi1d |
|- ( w = (/) -> ( ( x ~~ w -> ph ) <-> ( x ~~ (/) -> ph ) ) ) |
| 10 |
9
|
albidv |
|- ( w = (/) -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ (/) -> ph ) ) ) |
| 11 |
|
breq2 |
|- ( w = v -> ( x ~~ w <-> x ~~ v ) ) |
| 12 |
11
|
imbi1d |
|- ( w = v -> ( ( x ~~ w -> ph ) <-> ( x ~~ v -> ph ) ) ) |
| 13 |
12
|
albidv |
|- ( w = v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ v -> ph ) ) ) |
| 14 |
|
breq2 |
|- ( w = suc v -> ( x ~~ w <-> x ~~ suc v ) ) |
| 15 |
14
|
imbi1d |
|- ( w = suc v -> ( ( x ~~ w -> ph ) <-> ( x ~~ suc v -> ph ) ) ) |
| 16 |
15
|
albidv |
|- ( w = suc v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ suc v -> ph ) ) ) |
| 17 |
|
en0 |
|- ( x ~~ (/) <-> x = (/) ) |
| 18 |
5 1
|
mpbiri |
|- ( x = (/) -> ph ) |
| 19 |
17 18
|
sylbi |
|- ( x ~~ (/) -> ph ) |
| 20 |
19
|
ax-gen |
|- A. x ( x ~~ (/) -> ph ) |
| 21 |
|
nnon |
|- ( v e. _om -> v e. On ) |
| 22 |
|
rexdif1en |
|- ( ( v e. On /\ w ~~ suc v ) -> E. z e. w ( w \ { z } ) ~~ v ) |
| 23 |
21 22
|
sylan |
|- ( ( v e. _om /\ w ~~ suc v ) -> E. z e. w ( w \ { z } ) ~~ v ) |
| 24 |
|
snssi |
|- ( z e. w -> { z } C_ w ) |
| 25 |
|
uncom |
|- ( ( w \ { z } ) u. { z } ) = ( { z } u. ( w \ { z } ) ) |
| 26 |
|
undif |
|- ( { z } C_ w <-> ( { z } u. ( w \ { z } ) ) = w ) |
| 27 |
26
|
biimpi |
|- ( { z } C_ w -> ( { z } u. ( w \ { z } ) ) = w ) |
| 28 |
25 27
|
eqtrid |
|- ( { z } C_ w -> ( ( w \ { z } ) u. { z } ) = w ) |
| 29 |
|
vex |
|- w e. _V |
| 30 |
29
|
difexi |
|- ( w \ { z } ) e. _V |
| 31 |
|
breq1 |
|- ( y = ( w \ { z } ) -> ( y ~~ v <-> ( w \ { z } ) ~~ v ) ) |
| 32 |
31
|
anbi2d |
|- ( y = ( w \ { z } ) -> ( ( v e. _om /\ y ~~ v ) <-> ( v e. _om /\ ( w \ { z } ) ~~ v ) ) ) |
| 33 |
|
uneq1 |
|- ( y = ( w \ { z } ) -> ( y u. { z } ) = ( ( w \ { z } ) u. { z } ) ) |
| 34 |
33
|
sbceq1d |
|- ( y = ( w \ { z } ) -> ( [. ( y u. { z } ) / x ]. ph <-> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
| 35 |
34
|
imbi2d |
|- ( y = ( w \ { z } ) -> ( ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) |
| 36 |
32 35
|
imbi12d |
|- ( y = ( w \ { z } ) -> ( ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) <-> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) ) |
| 37 |
|
breq1 |
|- ( x = y -> ( x ~~ v <-> y ~~ v ) ) |
| 38 |
37 2
|
imbi12d |
|- ( x = y -> ( ( x ~~ v -> ph ) <-> ( y ~~ v -> ch ) ) ) |
| 39 |
38
|
spvv |
|- ( A. x ( x ~~ v -> ph ) -> ( y ~~ v -> ch ) ) |
| 40 |
|
rspe |
|- ( ( v e. _om /\ y ~~ v ) -> E. v e. _om y ~~ v ) |
| 41 |
|
isfi |
|- ( y e. Fin <-> E. v e. _om y ~~ v ) |
| 42 |
40 41
|
sylibr |
|- ( ( v e. _om /\ y ~~ v ) -> y e. Fin ) |
| 43 |
|
pm2.27 |
|- ( y ~~ v -> ( ( y ~~ v -> ch ) -> ch ) ) |
| 44 |
43
|
adantl |
|- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> ch ) ) |
| 45 |
42 44 6
|
sylsyld |
|- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> th ) ) |
| 46 |
39 45
|
syl5 |
|- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> th ) ) |
| 47 |
|
vex |
|- y e. _V |
| 48 |
|
vsnex |
|- { z } e. _V |
| 49 |
47 48
|
unex |
|- ( y u. { z } ) e. _V |
| 50 |
49 3
|
sbcie |
|- ( [. ( y u. { z } ) / x ]. ph <-> th ) |
| 51 |
46 50
|
imbitrrdi |
|- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) |
| 52 |
30 36 51
|
vtocl |
|- ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
| 53 |
|
dfsbcq |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( [. ( ( w \ { z } ) u. { z } ) / x ]. ph <-> [. w / x ]. ph ) ) |
| 54 |
53
|
imbi2d |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 55 |
52 54
|
imbitrid |
|- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 56 |
24 28 55
|
3syl |
|- ( z e. w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 57 |
56
|
expd |
|- ( z e. w -> ( v e. _om -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
| 58 |
57
|
com12 |
|- ( v e. _om -> ( z e. w -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
| 59 |
58
|
rexlimdv |
|- ( v e. _om -> ( E. z e. w ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 60 |
59
|
adantr |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( E. z e. w ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 61 |
23 60
|
mpd |
|- ( ( v e. _om /\ w ~~ suc v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) |
| 62 |
61
|
ex |
|- ( v e. _om -> ( w ~~ suc v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 63 |
62
|
com23 |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
| 64 |
63
|
alrimdv |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
| 65 |
|
nfv |
|- F/ w ( x ~~ suc v -> ph ) |
| 66 |
|
nfv |
|- F/ x w ~~ suc v |
| 67 |
|
nfsbc1v |
|- F/ x [. w / x ]. ph |
| 68 |
66 67
|
nfim |
|- F/ x ( w ~~ suc v -> [. w / x ]. ph ) |
| 69 |
|
breq1 |
|- ( x = w -> ( x ~~ suc v <-> w ~~ suc v ) ) |
| 70 |
|
sbceq1a |
|- ( x = w -> ( ph <-> [. w / x ]. ph ) ) |
| 71 |
69 70
|
imbi12d |
|- ( x = w -> ( ( x ~~ suc v -> ph ) <-> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
| 72 |
65 68 71
|
cbvalv1 |
|- ( A. x ( x ~~ suc v -> ph ) <-> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) |
| 73 |
64 72
|
imbitrrdi |
|- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. x ( x ~~ suc v -> ph ) ) ) |
| 74 |
10 13 16 20 73
|
finds1 |
|- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
| 75 |
74
|
19.21bi |
|- ( w e. _om -> ( x ~~ w -> ph ) ) |
| 76 |
75
|
rexlimiv |
|- ( E. w e. _om x ~~ w -> ph ) |
| 77 |
7 76
|
sylbi |
|- ( x e. Fin -> ph ) |
| 78 |
4 77
|
vtoclga |
|- ( A e. Fin -> ta ) |