Metamath Proof Explorer


Theorem isfi

Description: Express " A is finite". Definition 10.29 of TakeutiZaring p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion isfi
|- ( A e. Fin <-> E. x e. _om A ~~ x )

Proof

Step Hyp Ref Expression
1 df-fin
 |-  Fin = { y | E. x e. _om y ~~ x }
2 1 eleq2i
 |-  ( A e. Fin <-> A e. { y | E. x e. _om y ~~ x } )
3 relen
 |-  Rel ~~
4 3 brrelex1i
 |-  ( A ~~ x -> A e. _V )
5 4 rexlimivw
 |-  ( E. x e. _om A ~~ x -> A e. _V )
6 breq1
 |-  ( y = A -> ( y ~~ x <-> A ~~ x ) )
7 6 rexbidv
 |-  ( y = A -> ( E. x e. _om y ~~ x <-> E. x e. _om A ~~ x ) )
8 5 7 elab3
 |-  ( A e. { y | E. x e. _om y ~~ x } <-> E. x e. _om A ~~ x )
9 2 8 bitri
 |-  ( A e. Fin <-> E. x e. _om A ~~ x )