Description: Express " A is finite". Definition 10.29 of TakeutiZaring p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin | |- Fin = { y | E. x e. _om y ~~ x } |
|
2 | 1 | eleq2i | |- ( A e. Fin <-> A e. { y | E. x e. _om y ~~ x } ) |
3 | relen | |- Rel ~~ |
|
4 | 3 | brrelex1i | |- ( A ~~ x -> A e. _V ) |
5 | 4 | rexlimivw | |- ( E. x e. _om A ~~ x -> A e. _V ) |
6 | breq1 | |- ( y = A -> ( y ~~ x <-> A ~~ x ) ) |
|
7 | 6 | rexbidv | |- ( y = A -> ( E. x e. _om y ~~ x <-> E. x e. _om A ~~ x ) ) |
8 | 5 7 | elab3 | |- ( A e. { y | E. x e. _om y ~~ x } <-> E. x e. _om A ~~ x ) |
9 | 2 8 | bitri | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |