Metamath Proof Explorer


Theorem isfi

Description: Express " A is finite". Definition 10.29 of TakeutiZaring p. 91 (whose " Fin " is a predicate instead of a class). (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion isfi A Fin x ω A x

Proof

Step Hyp Ref Expression
1 df-fin Fin = y | x ω y x
2 1 eleq2i A Fin A y | x ω y x
3 relen Rel
4 3 brrelex1i A x A V
5 4 rexlimivw x ω A x A V
6 breq1 y = A y x A x
7 6 rexbidv y = A x ω y x x ω A x
8 5 7 elab3 A y | x ω y x x ω A x
9 2 8 bitri A Fin x ω A x