Metamath Proof Explorer


Theorem enssdom

Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998)

Ref Expression
Assertion enssdom

Proof

Step Hyp Ref Expression
1 relen Rel
2 f1of1 f:x1-1 ontoyf:x1-1y
3 2 eximi ff:x1-1 ontoyff:x1-1y
4 opabidw xyxy|ff:x1-1 ontoyff:x1-1 ontoy
5 opabidw xyxy|ff:x1-1yff:x1-1y
6 3 4 5 3imtr4i xyxy|ff:x1-1 ontoyxyxy|ff:x1-1y
7 df-en =xy|ff:x1-1 ontoy
8 7 eleq2i xyxyxy|ff:x1-1 ontoy
9 df-dom =xy|ff:x1-1y
10 9 eleq2i xyxyxy|ff:x1-1y
11 6 8 10 3imtr4i xyxy
12 1 11 relssi