Metamath Proof Explorer


Theorem enssdom

Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998) (Proof shortened by TM, 10-Feb-2026)

Ref Expression
Assertion enssdom

Proof

Step Hyp Ref Expression
1 f1of1 f : x 1-1 onto y f : x 1-1 y
2 1 eximi f f : x 1-1 onto y f f : x 1-1 y
3 2 ssopab2i x y | f f : x 1-1 onto y x y | f f : x 1-1 y
4 df-en = x y | f f : x 1-1 onto y
5 df-dom = x y | f f : x 1-1 y
6 3 4 5 3sstr4i