Metamath Proof Explorer


Theorem enssdom

Description: Equinumerosity implies dominance. (Contributed by NM, 31-Mar-1998) (Proof shortened by TM, 10-Feb-2026)

Ref Expression
Assertion enssdom ≈ ⊆ ≼

Proof

Step Hyp Ref Expression
1 f1of1 ( 𝑓 : 𝑥1-1-onto𝑦𝑓 : 𝑥1-1𝑦 )
2 1 eximi ( ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 → ∃ 𝑓 𝑓 : 𝑥1-1𝑦 )
3 2 ssopab2i { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 } ⊆ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 }
4 df-en ≈ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1-onto𝑦 }
5 df-dom ≼ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑓 𝑓 : 𝑥1-1𝑦 }
6 3 4 5 3sstr4i ≈ ⊆ ≼