Metamath Proof Explorer


Theorem f1of1

Description: A one-to-one onto mapping is a one-to-one mapping. (Contributed by NM, 12-Dec-2003)

Ref Expression
Assertion f1of1 ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1𝐵 )

Proof

Step Hyp Ref Expression
1 df-f1o ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴onto𝐵 ) )
2 1 simplbi ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1𝐵 )