Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1of1
Next ⟩
f1of
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1of1
Description:
A one-to-one onto mapping is a one-to-one mapping.
(Contributed by
NM
, 12-Dec-2003)
Ref
Expression
Assertion
f1of1
⊢
F
:
A
⟶
1-1 onto
B
→
F
:
A
⟶
1-1
B
Proof
Step
Hyp
Ref
Expression
1
df-f1o
⊢
F
:
A
⟶
1-1 onto
B
↔
F
:
A
⟶
1-1
B
∧
F
:
A
⟶
onto
B
2
1
simplbi
⊢
F
:
A
⟶
1-1 onto
B
→
F
:
A
⟶
1-1
B