Description: Equality theorem for class substitution. Class version of sbequ12 . (Contributed by NM, 26-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | sbceq1a | |- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid | |- ( [ x / x ] ph <-> ph ) |
|
2 | dfsbcq2 | |- ( x = A -> ( [ x / x ] ph <-> [. A / x ]. ph ) ) |
|
3 | 1 2 | bitr3id | |- ( x = A -> ( ph <-> [. A / x ]. ph ) ) |