| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							encv | 
							 |-  ( A ~~ (/) -> ( A e. _V /\ (/) e. _V ) )  | 
						
						
							| 2 | 
							
								
							 | 
							breng | 
							 |-  ( ( A e. _V /\ (/) e. _V ) -> ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( A ~~ (/) -> ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ibi | 
							 |-  ( A ~~ (/) -> E. f f : A -1-1-onto-> (/) )  | 
						
						
							| 5 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( f : A -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> A )  | 
						
						
							| 6 | 
							
								
							 | 
							f1o00 | 
							 |-  ( `' f : (/) -1-1-onto-> A <-> ( `' f = (/) /\ A = (/) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprbi | 
							 |-  ( `' f : (/) -1-1-onto-> A -> A = (/) )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							syl | 
							 |-  ( f : A -1-1-onto-> (/) -> A = (/) )  | 
						
						
							| 9 | 
							
								8
							 | 
							exlimiv | 
							 |-  ( E. f f : A -1-1-onto-> (/) -> A = (/) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							syl | 
							 |-  ( A ~~ (/) -> A = (/) )  | 
						
						
							| 11 | 
							
								
							 | 
							0ex | 
							 |-  (/) e. _V  | 
						
						
							| 12 | 
							
								
							 | 
							f1oeq1 | 
							 |-  ( f = (/) -> ( f : (/) -1-1-onto-> (/) <-> (/) : (/) -1-1-onto-> (/) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							f1o0 | 
							 |-  (/) : (/) -1-1-onto-> (/)  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							ceqsexv2d | 
							 |-  E. f f : (/) -1-1-onto-> (/)  | 
						
						
							| 15 | 
							
								
							 | 
							breng | 
							 |-  ( ( (/) e. _V /\ (/) e. _V ) -> ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) )  | 
						
						
							| 16 | 
							
								11 11 15
							 | 
							mp2an | 
							 |-  ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							mpbir | 
							 |-  (/) ~~ (/)  | 
						
						
							| 18 | 
							
								
							 | 
							breq1 | 
							 |-  ( A = (/) -> ( A ~~ (/) <-> (/) ~~ (/) ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							mpbiri | 
							 |-  ( A = (/) -> A ~~ (/) )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							impbii | 
							 |-  ( A ~~ (/) <-> A = (/) )  |