Step |
Hyp |
Ref |
Expression |
1 |
|
encv |
|- ( A ~~ (/) -> ( A e. _V /\ (/) e. _V ) ) |
2 |
|
breng |
|- ( ( A e. _V /\ (/) e. _V ) -> ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) ) |
3 |
1 2
|
syl |
|- ( A ~~ (/) -> ( A ~~ (/) <-> E. f f : A -1-1-onto-> (/) ) ) |
4 |
3
|
ibi |
|- ( A ~~ (/) -> E. f f : A -1-1-onto-> (/) ) |
5 |
|
f1ocnv |
|- ( f : A -1-1-onto-> (/) -> `' f : (/) -1-1-onto-> A ) |
6 |
|
f1o00 |
|- ( `' f : (/) -1-1-onto-> A <-> ( `' f = (/) /\ A = (/) ) ) |
7 |
6
|
simprbi |
|- ( `' f : (/) -1-1-onto-> A -> A = (/) ) |
8 |
5 7
|
syl |
|- ( f : A -1-1-onto-> (/) -> A = (/) ) |
9 |
8
|
exlimiv |
|- ( E. f f : A -1-1-onto-> (/) -> A = (/) ) |
10 |
4 9
|
syl |
|- ( A ~~ (/) -> A = (/) ) |
11 |
|
0ex |
|- (/) e. _V |
12 |
|
f1oeq1 |
|- ( f = (/) -> ( f : (/) -1-1-onto-> (/) <-> (/) : (/) -1-1-onto-> (/) ) ) |
13 |
|
f1o0 |
|- (/) : (/) -1-1-onto-> (/) |
14 |
11 12 13
|
ceqsexv2d |
|- E. f f : (/) -1-1-onto-> (/) |
15 |
|
breng |
|- ( ( (/) e. _V /\ (/) e. _V ) -> ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) ) |
16 |
11 11 15
|
mp2an |
|- ( (/) ~~ (/) <-> E. f f : (/) -1-1-onto-> (/) ) |
17 |
14 16
|
mpbir |
|- (/) ~~ (/) |
18 |
|
breq1 |
|- ( A = (/) -> ( A ~~ (/) <-> (/) ~~ (/) ) ) |
19 |
17 18
|
mpbiri |
|- ( A = (/) -> A ~~ (/) ) |
20 |
10 19
|
impbii |
|- ( A ~~ (/) <-> A = (/) ) |