| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							encv | 
							⊢ ( 𝐴  ≈  ∅  →  ( 𝐴  ∈  V  ∧  ∅  ∈  V ) )  | 
						
						
							| 2 | 
							
								
							 | 
							breng | 
							⊢ ( ( 𝐴  ∈  V  ∧  ∅  ∈  V )  →  ( 𝐴  ≈  ∅  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							⊢ ( 𝐴  ≈  ∅  →  ( 𝐴  ≈  ∅  ↔  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ibi | 
							⊢ ( 𝐴  ≈  ∅  →  ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅ )  | 
						
						
							| 5 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( 𝑓 : 𝐴 –1-1-onto→ ∅  →  ◡ 𝑓 : ∅ –1-1-onto→ 𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							f1o00 | 
							⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ 𝐴  ↔  ( ◡ 𝑓  =  ∅  ∧  𝐴  =  ∅ ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprbi | 
							⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ 𝐴  →  𝐴  =  ∅ )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							syl | 
							⊢ ( 𝑓 : 𝐴 –1-1-onto→ ∅  →  𝐴  =  ∅ )  | 
						
						
							| 9 | 
							
								8
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ∅  →  𝐴  =  ∅ )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							syl | 
							⊢ ( 𝐴  ≈  ∅  →  𝐴  =  ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 12 | 
							
								
							 | 
							f1oeq1 | 
							⊢ ( 𝑓  =  ∅  →  ( 𝑓 : ∅ –1-1-onto→ ∅  ↔  ∅ : ∅ –1-1-onto→ ∅ ) )  | 
						
						
							| 13 | 
							
								
							 | 
							f1o0 | 
							⊢ ∅ : ∅ –1-1-onto→ ∅  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							ceqsexv2d | 
							⊢ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅  | 
						
						
							| 15 | 
							
								
							 | 
							breng | 
							⊢ ( ( ∅  ∈  V  ∧  ∅  ∈  V )  →  ( ∅  ≈  ∅  ↔  ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ ) )  | 
						
						
							| 16 | 
							
								11 11 15
							 | 
							mp2an | 
							⊢ ( ∅  ≈  ∅  ↔  ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							mpbir | 
							⊢ ∅  ≈  ∅  | 
						
						
							| 18 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝐴  =  ∅  →  ( 𝐴  ≈  ∅  ↔  ∅  ≈  ∅ ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							mpbiri | 
							⊢ ( 𝐴  =  ∅  →  𝐴  ≈  ∅ )  | 
						
						
							| 20 | 
							
								10 19
							 | 
							impbii | 
							⊢ ( 𝐴  ≈  ∅  ↔  𝐴  =  ∅ )  |