Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | uneq1 | |- ( A = B -> ( A u. C ) = ( B u. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |- ( A = B -> ( x e. A <-> x e. B ) ) |
|
2 | 1 | orbi1d | |- ( A = B -> ( ( x e. A \/ x e. C ) <-> ( x e. B \/ x e. C ) ) ) |
3 | elun | |- ( x e. ( A u. C ) <-> ( x e. A \/ x e. C ) ) |
|
4 | elun | |- ( x e. ( B u. C ) <-> ( x e. B \/ x e. C ) ) |
|
5 | 2 3 4 | 3bitr4g | |- ( A = B -> ( x e. ( A u. C ) <-> x e. ( B u. C ) ) ) |
6 | 5 | eqrdv | |- ( A = B -> ( A u. C ) = ( B u. C ) ) |