Metamath Proof Explorer


Theorem uneq1

Description: Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion uneq1
|- ( A = B -> ( A u. C ) = ( B u. C ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( A = B -> ( x e. A <-> x e. B ) )
2 1 orbi1d
 |-  ( A = B -> ( ( x e. A \/ x e. C ) <-> ( x e. B \/ x e. C ) ) )
3 elun
 |-  ( x e. ( A u. C ) <-> ( x e. A \/ x e. C ) )
4 elun
 |-  ( x e. ( B u. C ) <-> ( x e. B \/ x e. C ) )
5 2 3 4 3bitr4g
 |-  ( A = B -> ( x e. ( A u. C ) <-> x e. ( B u. C ) ) )
6 5 eqrdv
 |-  ( A = B -> ( A u. C ) = ( B u. C ) )