Description: Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | uneq2 | |- ( A = B -> ( C u. A ) = ( C u. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 | |- ( A = B -> ( A u. C ) = ( B u. C ) ) |
|
2 | uncom | |- ( C u. A ) = ( A u. C ) |
|
3 | uncom | |- ( C u. B ) = ( B u. C ) |
|
4 | 1 2 3 | 3eqtr4g | |- ( A = B -> ( C u. A ) = ( C u. B ) ) |