Metamath Proof Explorer


Theorem uncom

Description: Commutative law for union of classes. Exercise 6 of TakeutiZaring p. 17. (Contributed by NM, 25-Jun-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion uncom
|- ( A u. B ) = ( B u. A )

Proof

Step Hyp Ref Expression
1 orcom
 |-  ( ( x e. A \/ x e. B ) <-> ( x e. B \/ x e. A ) )
2 elun
 |-  ( x e. ( B u. A ) <-> ( x e. B \/ x e. A ) )
3 1 2 bitr4i
 |-  ( ( x e. A \/ x e. B ) <-> x e. ( B u. A ) )
4 3 uneqri
 |-  ( A u. B ) = ( B u. A )