Description: Commutative law for union of classes. Exercise 6 of TakeutiZaring p. 17. (Contributed by NM, 25-Jun-1998) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | uncom | |- ( A u. B ) = ( B u. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom | |- ( ( x e. A \/ x e. B ) <-> ( x e. B \/ x e. A ) ) |
|
2 | elun | |- ( x e. ( B u. A ) <-> ( x e. B \/ x e. A ) ) |
|
3 | 1 2 | bitr4i | |- ( ( x e. A \/ x e. B ) <-> x e. ( B u. A ) ) |
4 | 3 | uneqri | |- ( A u. B ) = ( B u. A ) |